Discriminative adaptation for speaker verification
نویسندگان
چکیده
This paper describes a speaker verification system in which the talker and imposter models are adapted to achieve maximum discrimination, or equivalently minimum verification error. This goal is accomplishedby extending the minimum error classificationcriterion (MCE) and generalized probabilistic descent (GPD) algorithm to the task of adapting talker model parameters and the corresponding anti-talker model parameters to the test environments so as to minimize an empirical estimate of the verification error rate. We address in the current study adaptation of two types of parameters: the model parameters and the decision threshold. We have obtained substantial improvements in equal error rate by applying combined techniques involving a simplified MAP (maximum a posteriori) method and the GPD algorithm. The equal error rate for a database of 43 talkers with 5 adaptation utterances each was reduced from the previously reported best result of 5.41% [1] to 2.17%. We will discuss several alternative methods that have been investigated in this work to provide comparative insights for the use of discriminative methods in speaker verification tasks.
منابع مشابه
Discriminative adaptation for speaker verification
Speaker verification is a binary classification task to determine whether a claimed speaker uttered a phrase. Current approaches to speaker verification tasks typically involve adapting a general speaker Universal Background Model (UBM), normally a Gaussian Mixture Model (GMM), to model a particular speaker. Verification is then performed by comparing the likelihoods from the speaker model to t...
متن کاملUnsupervised Discriminative Training of PLDA for Domain Adaptation in Speaker Verification
This paper presents, for the first time, unsupervised discriminative training of probabilistic linear discriminant analysis (unsupervised DT-PLDA). While discriminative training avoids the problem of generative training based on probabilistic model assumptions that often do not agree with actual data, it has been difficult to apply it to unsupervised scenarios because it can fit data with almos...
متن کاملComparison of discriminative training methods for speaker verification
The maximum likelihood estimation (MLE) and Bayesian maximum a-posteriori (MAP) adaptation methods for Gaussian mixture models (GMM) have proven to be effective and efficient for speaker verification, even though each speaker model is trained using only his own training utterances. Discriminative criteria aim at increasing discriminability by using out-of-class data. In this paper, we consider ...
متن کاملImproving GMM-UBM speaker verification using discriminative feedback adaptation
The Gaussian Mixture Model Universal Background Model (GMM-UBM) system is one of the predominant approaches for text-independent speaker verification, because both the target speaker model and the impostor model (UBM) have generalization ability to handle “unseen” acoustic patterns. However, since GMM-UBM uses a common anti-model, namely UBM, for all target speakers, it tends to be weak in reje...
متن کاملDiscriminative Transformation for Sufficient Adaptation in Text-Independent Speaker Verification
In conventional Gaussian Mixture Model – Universal Background Model (GMM-UBM) text-independent speaker verification applications, the discriminability between speaker models and the universal background model (UBM) is crucial to system’s performance. In this paper, we present a method based on heteroscedastic linear discriminant analysis (HLDA) that can enhance the discriminability between spea...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1996